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We present an experimental and computational investigation of mixing of a viscoelastic 
fluid in two-dimensional time-periodic flows generated in an eccentric cylindrical 
geometry. The objective of the study is to investigate the impact of fluid elasticity on 
the morphological structures produced by the advection of passive tracers in chaotic 
flows. The relevant dimensionless numbers that quantify the rheological differences 
with respect to the Newtonian fluid are the Deborah number (De), defined as the ratio 
of the fluid timescale to the flow timescale, and the Weissenberg number (We), defined 
as the product of the fluid timescale and the mean shear rate. The effects of elasticity 
are investigated in the limit of slow flows, De z 0 and We < 0.1. The experimental 
window of We is limited to Newtonian behaviour on the low end and the transition to 
three-dimensional flow on the high end; experiments show that this window is small, 
0.02 -= We < 0.1. Typical values of the Reynolds number and the Strouhal number are 
O(O.001) and 0(0.1), respectively. 

Results from experiments with a constant-viscosity elastic fluid and computations 
using the upper-convected Maxwell constitutive equation are presented. Even though 
the streamlines for the elastic flow are nearly indistinguishable from the Newtonian 
flow, small deviations in the velocity field produce large effects on chaotically advected 
patterns. Elasticity affects both the asymptotic coverage of a dyed passive tracer and 
the rate at which the tracer is stretched. In all cases the tracer undergoes exponential 
stretching, but on a longer timescale as the elasticity increases. According to flow 
conditions, elasticity might increase or decrease the degree of regularity ; however, 
island symmetry does not seem to be affected. Similar phenomena are observed in both 
the experiments and computations; therefore, an analysis of the chaotic dynamics of 
the periodic flow using numerical techniques is possible. 

1. Introduction 
Mixing of viscoelastic fluids is important in a variety of industrial applications such 

as processing of polymers solutions and melts (Elemans 1989; Middleman 1977; 
Rauwendaal 1991; Tadmor & Gogos 1979). However, in spite of recent advances in 
understanding mixing processes, especially those aspects connected with chaotic 
mixing, there is a dearth of systematic studies of mixing of viscoelastic fluids in well- 
characterized flows. Part of the problem is undoubtedly due to the difficulties 
associated with computing the velocity field of viscoelastic fluids in relatively simple 
configurations (Crochet, Davies & Walters 1984; Keunings 1989). Nevertheless, even 
though this is a rather difficult point and a general area of much ongoing research 
(Pilitsis & Beris 1989; Burdette et al. 1989; Debbaut, Marchal & Crochet 1988), an 
analysis of the chaotic mixing of viscoelastic fluids seems within reach, particularly in 
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the case of slow, two-dimensional, time-periodic flows. Such is the objective of this 
paper. 

It is now well known that if a two-dimensional velocity field is steady the velocity 
field is integrable and the system cannot be chaotic (Aref 1984). On the other hand, if 
the velocity field is time-periodic, the phase space of the system has one more 
dimension, and there is a good chance that the system will be chaotic. Indeed such 
systems appear to be common in practice and a few have been studied experimentally 
and computationally (Aref 1984; Chien, Rising & Ottino 1986; Chaiken et al. 1986; 
Leong & Ottino 1989; Swanson & Ottino 1990). Almost without exception 
experimental studies have focused on the stirring of passive dyes in Newtonian fluids 
operating under time-periodic, two-dimensional Stokes flow. In fact, the only published 
work we are aware of that focuses on the advection of passive tracers in an elastic fluid 
is a short experimental study by Leong & Ottino (1990). 

The typical dye structure generated in chaotically advected flows consists of islands, 
where the fluid stretches and contracts in a periodic manner resulting in a net twist with 
little stretching, dispersed within a sea of chaos where the tracer is stretched 
exponentially and folded in an iterative manner. Typically, the most visible islands are 
those associated with low-order periodic elliptic points (for a review of these issues, see 
Ottino 1989). Stokes flow produces a number of simplifications in the island structure, 
symmetry and rate independence being the most important. The islands are arranged 
in a symmetric pattern since the underlying streamlines are symmetric (as a result of 
symmetric flow domains) which results in symmetric placement of the elliptic periodic 
points in the flow. Moreover, the island structure is independent of the actual speed of 
the experiment. For example, in the case of flow between two eccentric cylinders, the 
dye structures are independent of the rate of rotation of the cylinders (or in the case 
of both cylinders rotating simultaneously, only dependent on the ratio of angular 
speeds). Consequently, as long as the Reynolds and Strouhal numbers are small, the 
mixing morphology is characterized solely by the displacement of the boundary during 
a period (Swanson & Ottino 1990). This independence of rate is lost in the case of 
elastic fluids because of the presence of an additional timescale associated with the 
relaxation of the fluid to its stress environment. The speed of the boundaries, or 
equivalently, the shear rate, now plays an important role in the mixing effectiveness. 

The relative importance of rheological differences from Newtonian behaviour is 
quantified by the Weissenberg (We) and Deborah (De) numbers (Bird, Armstrong & 
Hassager 1987), 

We = AJpl (1) 

and De = ~ l / T f Z O W ,  (2) 

wh&e A, is the (longest) fluid relaxation time, T f l o w  is the characteristic timescale of the 
flow (a timescale during which a typical fluid element experiences significant 
kinematical changes), and 131 is the mean shear rate. For steady flows these two 
numbers are, in general, equivalent since both I?( and T f z o w  are equal to the ratio of a 
characteristic length L to a characteristic velocity V. For time-periodic flows with 
period T, characterized by a Strouhal number, 

Sr = L/TV, (3) 

the period T can be taken as T,,,, and the Deborah number can be considered as the 
product of Sr and We. The material behaves as a Newtonian fluid in the limit of 
We = 0 and as a purely elastic solid as De approaches infinity. 
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The objective of this paper is to investigate systematically the impact of fluid 
elasticity on the morphological structures produced by the advection of passive tracers 
in time-periodic flows. The goal is to extend previous studies involving Newtonian 
fluids and to provide a rationalization of the effects of elasticity on chaotic advection. 
Both an experimental study using a simple constant-viscosity fluid (Boger 1977) and 
a computational study using the upper-convected Maxwell constitutive equation are 
presented. Both studies are performed for a two-dimensional flow between eccentric 
cylinders. There are several reasons for these choices. The use of Boger fluids allows the 
separation of shear-thinning effects from those of elasticity and facilitates comparison 
between experimental and computational results. The Maxwell constitutive model can 
be simulated using a relatively simple finite-difference algorithm which works well 
under conditions of low We. The eccentric cylindrical geometry allows comparisons 
with a well-characterized Newtonian system (Swanson & Ottino 1990) with an 
analytical solution (Ballal & Rivlin 1976) and avoids numerical problems associated 
with the presence of corner singularities as in, for example, cavity flows. Moreover, the 
cylinders can be operated in either counter-rotating or corotating modes, producing 
two fundamentally different flows from a kinematical viewpoint. The counter-rotating 
case contains an elliptic and a hyperbolic stationary point while the corotational case 
contains neither. 

Most of the previous work in computational non-Newtonian fluid dynamics has 
been in the area of steady flows (Keunings 1989). To our knowledge, no computational 
study has focused exclusively on time-periodic flows. Since it is well established that 
simulating viscoelastic flow is computationally expensive, it is appropriate for a first 
study to investigate the effects of elasticity in the limit of slow flows, De x 0, We < 0.1, 
and Reynolds number Re < 0.1. Consequently, as shown by the results in $4, the time- 
periodic elastic flow can be approximated by a piecewise-steady flow. The experiments 
are limited to slow flows because of a transition to three-dimensional flow for We > 0.1. 
Nevertheless, the observations made at these relatively small values of We provide 
noticeable manifestations of the effect of elasticity. 

The paper is organized as follows. Section 2 presents the experimental aspects of the 
study including preparation and rheological behaviour of the viscoelastic fluids and a 
description of the design and operation of the eccentric cylindrical apparatus. Section 
3 discusses the mathematical model and key assumptions pertaining to the 
computational study. Section 4 compares the results from the experiments and the 
computations, and the effect of elasticity is addressed. Finally, $ 5  discusses the role 
elasticity plays in counter-rotating versus corotating operation and summarizes the 
interpretation of the results. 

2. Experimental methods 
2.1. ExperimentalJEuids and rheological properties 

Non-Newtonian fluids typically possess elasticity and a shear-rate-dependent viscosity. 
In order to uncouple these effects, we use a constant-viscosity elastic fluid. These fluids 
are typically made by the addition of a small quantity of a high-molecular-weight 
polymer to a viscous Newtonian solvent (Boger 1977). The shear viscosity of the 
solvent dwards any polymer contribution, resulting in a constant viscosity. 
Additionally, the large solvent viscosity promotes the elasticity of the fluid as the 
polymer molecules try to relax against a large viscous resistance. Although the 
rheological details are significantly different, the elasticity of Boger fluids can approach 
that of a typical polymer melt. 
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FIGURE 1 .  First normal stress coefficient, Yl, and shear viscosity, 7, versus shear rate, p. (a) Fluid 
PAA-I; (b )  fluid PAA-3: 0,  7 at temperature T = 27 "C; +, at T = 21 "C shifted; A, Yl at 
T = 27 "C; ., Yl at T = 21 O C  shifted. The shift factor for both 7 and !PI for T = 27 "C to T = 21 "C 
is 1.6. 

The fluid system in this study is a polyacrylamide (Scientific Polymer Products, 
5-6 x log MW) solute in a corn syrup (American Sweeteners, 4362)/water solvent. The 
polymer concentration is held constant at 100 p.p.m. throughout the study. The 
polymer is first dissolved in water at a 1 YO weight concentration. The poly- 
acrylamide/water solution is then introduced into the corn syrup/water solvent at a 
1 YO weight concentration to produce a 100 p.p.m. polymer concentration. Before the 
addition of the polymer solution, the corn syrup is heated to 40-50 "C to reduce its 
viscosity. The solution is stirred for 8-10 h at 40 "C to allow for complete polymer 
dispersal. The solution is then transferred into glass cylinders which are placed in the 
mixing apparatus. Before the fluid is loaded into the cylinder, a thin layer (5 mm) of 
a high-density low-viscosity fluid (Aldrich, Fomblinm Y-L VAC 06/6 vacuum pump 
oil, 31,792-6) is placed on the bottom to minimize any flow effects from the bottom 
surface of the cylinder. The viscoelastic fluid is then carefully poured on top of this 
layer to a depth of about 8 cm, followed by a 3 mm layer of mineral oil (Aldrich, 
33,077-9) to prevent the formation of a skin caused by water evaporation. During the 
blending of the polymer solution and corn syrup, air entrainment unavoidably leads to 
the presence of bubbles which affects the flow and the quality of the photography; 
consequently, the solutions must sit for 6 8  days to allow the bubbles to rise out of the 
solution. Within this time frame, only air bubbles whose radius is O( lop4) cm remain 
in the solution. 

The relaxation time of the fluid is adjusted by varying the solvent viscosity through 
manipulation of the water content. Two different water concentrations are used, 1 % 
(PAA-1) and 3 %  (PAA-3) by weight, to allow for a change in We without a 
concomitant change in the rotation speed of the cylinders. Consequently, Re and We 
can be adjusted independently. The use of two fluids also provides greater flexibility in 
setting the boundary velocity. Because the amount of light available for the 
photography is limited, the motion needs to be sufficiently slow so that the shutter 
speed needed for proper exposure is able to stop the flow. 

The rheological characterization of the experimental fluids was completed by Dr 
R. G. Larson at AT&T Bell Laboratories. Plots of the shear viscosity, 7, and first 
normal stress difference coefficient, !PI, are presented in figure 1. The constant-viscosity 
curve indicates that the fluid is indeed a Boger fluid which suggests using an Oldroyd- 
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Fluid 4 (s) r (PI P k/cm3) 
PAA- 1 (') 0.40f0.10 400+20 1 .42(3) 
PAA-3'l' 0.20 f 0.06 200 f 10 1 .42(3) 
Mineral Oil@) - 0.35 0.88 
Y.L. VAC 06/6(2) 1.20 1.88 - 

TABLE 1 .  Fluid properties. (1) T = 27 "C; (2) T = 23 "C; (3) density of pure corn syrup 

type rheological model (Bird et al. 1987); the error in 7 is estimated to be f 5 YO. Even 
though Y, exhibits shear thinning at higher shear rates, it is essentially constant in the 
range of shear rates of the experiments ( y  < 0.4 s-l). There is a fair amount of 
scattering of the !PI data because of the small signal at the low-shear-rate plateau. The 
error is estimated to be & 25 YO in figure 1 (a)  for PAA-1 and & 20 % in figure 1 (b) for 
PAA-3. The relaxation time is obtained from the zero-shear-limit of !PI (Bird et al. 
1987), 

Since the experiment is sensitive to temperature, measurements were made at two 
temperatures for PAA-1 and a shift factor is used to interpolate a relaxation time or 
viscosity for an intermediate temperature. The fluid properties are summarized in 
table 1. 

2.2. Apparatus and operation 
The flow apparatus consists of two cylinders whose axes are parallel but not coincident. 
The apparatus is a new design based on that used in Swanson & Ottino (1990) and 
Tjahjadi & Ottino (1991). The geometry is specified by a dimensionless gap and a 
dimensionless eccentricity which are defined respectively as 

A1 = ~1,0/27.  (4) 

Y 

and 

where e is the eccentricity, the distance between the cylinder centres, and rout and rin 
are the radii of the cylinders. The geometry and apparatus are illustrated in figure 2. 
Removable glass cylinders make preparation and loading of the viscoelastic fluid a 
simple task: the glass cylinders are mounted on the stand after the fluid is loaded into 
the outer cylinder. Although the geometry is kept constant in this study, this design 
also allows for a wide range of variations. 

The inner and outer cylinders are made of Pyrex and are 2.2 cm OD and 6.6 cm ID, 
and the geometrical parameters for this system are p = 2.0 and E = 0.45. There are two 
major components to the apparatus: a drive section and a control section. The drive 
section consists of two motors, gearing and adapters to hold each cylinder. The control 
section consists of a 286 PC computer with associated input and output signal 
generators. The computer sends an input digital signal to a D/A converter which 
supplies a voltage to the motor controllers. Tachometers on each motor provide a 
feedback output signal to the computer via an A/D converter. The angular rotation can 
be controlled within f 2 YO. 

W e  and Re for flow in this geometry are defined as 

W e  = A, V / r i n p  (7) 

and Re = pvr,,pU/7, (8) 
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FIGURE 2. (a) Eccentric cylindrical geometry; (b) experimental apparatus. 

where p is the density and V is the linear velocity of either cylinder. The shear-rate 
range of the apparatus is from 0.06 to 0.37 s-l which corresponds to an experimental 
range of We from 0.02 to 0.24 and Re from 0.005 to 0.06 for this particular fluid system 
at 21 "C. Given the uncertainties in the values of A, and V,  the experimental error 
in the value of We is estimated to be +32% for fluid PAA-3 and +27% for fluid 

Flow visualization is accomplished by the advection of a neutrally buoyant, passive 
PAA- 1. 
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FIGURE 3. Symmetric square wave form; -, inner cylinder; ----, outer cylinder. 

fluorescent tracer illuminated by long-wave UV lights (UV-A). It should be pointed out 
that the rheology of the tracer plays almost no role; in fact, experiments conducted 
with viscoelastic tracers and Newtonian tracers give nearly identical results. The 
experiments are recorded using a 35 mm camera, 105 mm lens with an orange filter, 
and 400 ASA colour slide film. Two different dyes, Cole Parmer yellow/green (295-17) 
or red (295-15) dye, produce satisfactory results, but the photography is more difficult 
than in previous experiments with glycerin (Swanson & Ottino 1990) since corn syrup 
radiates the absorbed UV light at a greater intensity and longer wavelength. Typical 
shutter speeds are a or $ s which are sufficiently fast to stop the flow. The photographs 
are taken through the bottom of the outer cylinder. 

Chaotic advection is accomplished by a time-periodic forcing of the boundaries. In 
order to keep the investigation reasonably focused, we consider only the symmetric 
square-wave form shown in figure 3 with the cylinders operating either in corotating 
or counter-rotating modes. The respective angular velocities are Q,, and OOut, and the 
ratio of the angular velocities, Qin/Qout,  is denoted as Q. The magnitude of 52 is set 
equal to the ratio of the radii so that the linear speed is the same on both cylinders. 
Experiments are characterized by the angular displacement of the outer cylinder in a 
period : 

8 = JOT Q,u,(t) dt (9) 

where T is the period length. 
A typical experiment is set up by injecting a tracer as a small blob of dye about 4 cm 

below the surface of the fluid using a thick needle syringe. Since the inner cylinder 
rotates first, the tracer is placed near the inner cylinder so that it is stretched 
immediately. The cylinders are then rotated in a discontinuous manner, as indicated by 
the wave form in figure 3, for a number of periods, N .  Photographs are taken at the 
end of each period when the symmetry of the dye structures, indicative of symmetric 
velocity fields, is most apparent. Typical values of 8 are gx, 27c, and 4n. Experiments 
for different &values are compared at identical values of the cumulative rotation of the 
outer cylinder. The asymptotic dye structure in most of the flows is developed after 24n 
radians of rotation of the outer cylinder which corresponds to 16, 12, and 6 periods, 
respectively, for these values of 8. 

10 FLM 2 5 6  
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3. Computational methods 
3.1. Mathematical model 

Viscoelastic flow is modelled in terms of the continuity equation, momentum equation, 
and a suitable (either rate or integral) constitutive equation (Bird et al. 1987). The 
development of algorithms to solve viscoelastic flows has been hampered by what is 
known as the high-We problem, that is, algorithms fail at relatively low We, 0(1) 
(Crochet et al. 1984; Keunings 1989; Joseph 1990). Consequently, a great deal of 
analytical work has been done on examining the differential equations describing the 
flow, and recent developments indicate significant progress has been made in handling 
higher We flows (Pilitsis & Beris 1989; Burdette et al. 1989; Debbaut et al. 1988). It has 
been shown as well that viscoelastic constitutive equations contain some hyperbolic 
character and are capable of changing type and losing evolution (Rutkevich 1969; 
Joseph, Renardy & Saut 1985; Dupret & Marchal 1986). It is therefore apparent that 
computations can be aided by exploiting the hyperbolic character of the system of 
governing equations. This can be achieved by a suitable handling of the mass- 
conservation constraint. The algorithm developed by Phelan, Malone & Winter (1989) 
employs a compressible form of the continuity equation to form a purely hyperbolic 
set of equations. Consequently, a robust algorithm originally developed for hyperbolic 
equations in compressible gas flows can be used to simulate the flow of a Maxwell fluid. 
Since the algorithm is based on finite differences, it is relatively easy to implement. 

The compressible form of the continuity equation is derived as follows for 
isothermal flow. The convective derivative of density is proportional to the convective 
derivative of pressure : 

where K is the inverse of the isothermal compressibility. Substituting (10) into the 
continuity equation yields the isothermal compressible continuity equation : 

DP -+K(V.U) Dt = 0. 

The isothermal compressibility has been measured for polymer solutions and a 
physically realistic value for K (lo4 atm) is used in the computation (Phelan 1989). Since 
the flow is nearly incompressible (K large), compressibility effects in both the 
momentum and constitutive equation are neglected. The derivation of (1 1) is not based 
on a Taylor series expansion as presented in Phelan et al. (1989). Consequently, (11) 
is valid for any isothermal flow, and there is no restriction about a Taylor series 
expansion point. 

The extra-stress tensor S is related to the deformation of the fluid by the upper- 
convected Maxwell model, 

A, --(VU)T.S-S.VU +S-q[Vu+(Vu)T] = 0. [",s 1 
This relation is the simplest rate equation that can describe a fluid with memory. The 
equation contains two parameters, the shear viscosity, q, and the relaxation time, A,. 
The model predicts a constant shear viscosity which is appropriate for the experimental 
fluid. In addition, the Maxwell model cannot change type in inertialess flows. A 
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description of the algorithm used to simulate the flow of the Maxwell fluid is presented 
in 53.3. 

3.2. Dimensional analysis 
The complete equation set to describe viscoelastic flow includes the momentum 
equation in addition to (11) and (12). If the characteristic velocity, length, and stress 
in this model are defined as r,, Q,, (= rout SZ,,,), Tin p, and yQ,,/,u, respectively, the 
complete set of governing equations in dimensionless form is given by 

(13) 

+Vp-V-S = 0, (14) 

Sr-+u-Vp+K(V.u) 3P = 0, 
at 

We Sr-+u~VS-(Vu)*.S-S~Vu +S-[VU+(VU)~] = 0, (1 5) 

(16) where Sr = P I  T,tow Qtn, 

Re = P C n p Q i n I ~ ,  (17) 

and We = A,Qi,/pu. (18) 

and [ :  1 

According to this choice, the stress is scaled by qV/L.  However, the stress can also be 
scaled by y/Al. The momentum and constitutive equations are scaled identically for the 
two different choices when We = 1.  We choose this scaling of the stress since We < 0.1 
for all flows presented in this paper. A discussion on the scaling of viscoelastic flow 
equations can be found in Joseph (1990). 

For time-periodic flow, the appropriate choice for the flow timescale is the period 
length, T. If the period is sufficiently long (Sr < l), the transient fields can be neglected, 
and the time-periodic flow can be simulated as a sequence of steady flows. This is a 
crucial assumption as the time required to simulate the flow is reduced by a factor equal 
to the number of periods: typical CPU times are reduced by at least an order of 
magnitude. 

Since Re, We, and Sr are small, the physics can be considered a perturbation of 
Stokes flow. The Weissenberg number is usually interpreted as the ratio of elastic forces 
to viscous forces ; similarly, the Reynolds number characterizes the ratio of inertial 
forces to viscous forces; hence, the relative corrections to the Stokes solution due to 
elasticity and inertia is characterized by the Elasticity number (Astarita & Marrucci 
1974), 

Note that El is a function of the physical constants of the fluid and the geometry and 
independent of the characteristic velocity. If El % 1, the correction to Stokes flow will 
be dominated by the effects of elasticity. 

El = We/Re = A, y/pr,2,p2. (19) 

3.3. Algorithm 
The entire set of the compressible continuity equation, the Maxwell constitutive 
equation, and the momentum equation (( 13k(15)) form a purely hyperbolic system. 
The steady velocity, stress, and pressure fields are computed by integrating the coupled 
equation set to steady state using a method-of-lines approach with the split coefficient 
matrix (SCM) algorithm originally developed for compressible gas flows (Anderson, 

10-2 
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FIGURE 4. 49 x 96 computational finite-difference grid in bipolar coordinate system. 

Tannehill & Pletcher 1984). The algorithm manages the hyperbolic character of the 
equation set by splitting the coefficient matrix along the directions of the characteristics 
of the system. The spatial derivatives are approximated with either forward or 
backward finite differences depending on the eigendirections. We have improved the 
algorithm (SCM-star) to increase its speed: instead of splitting the matrices, a 
combination of the original coefficient matrix and one based on the absolute values of 
the eigenvalues performs the same task. Details of this improvement are provided in 
the Appendix. 

A bipolar coordinate system (&$) is used to discretize the spatial domain in the 
eccentric annulus. The transformation is defined as 

and 

a sinh 6 
cosh [+ cos $ x =  

a sin $ ’ = cosh(+cos$’ 

where a is a geometrical parameter based on the eccentricity and the radii, 

a = Tin- 
€ 

In order to capture the chaotic dynamics with an acceptable amount of error, a 
relatively fine grid is used consisting of 49 radial nodes and 96 azimuthal nodes. The 
grid is presented in figure 4. This choice was based on computations done by Swanson 
(1991) on chaotic advection using a discretized form of the analytical solution for 
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Stokes flow and comparing the results to the original exact solution. Using a first-order 
interpolation method, the results in Swanson (1991) indicate that about 5000 nodes are 
necessary to accurately reproduce the results of the analytical solution. 

Another consideration for the grid size is the accuracy of the solution of the partial 
differential equation set (13)-(15). To confirm that the results are a manifestation of the 
physical phenomena being modelled and not a numerical artifact, solutions are 
computed on three different sizes: 37 x 72, 49 x 96, and 97 x 192. The solution of the 
system of partial differential equations converges with grid spacing, indicating that the 
results are not a numerical artifact. The solutions for the two grids with the smallest 
spacing (49 x 96 and 97 x 192) nearly overlap one another. This indicates that the 
49 x 96 grid is of sufficient accuracy for the solution of the system of partial differential 
equations. 

3.4. Methods of analysis 
The experiment can be simulated by discretizing the boundary of a tracer with a set of 
points and integrating their trajectories. However, because of the exponential rate of 
stretching present in these flows, it would take a prohibitive number of points to track 
the material surface of the tracer (Franjione & Ottino 1987). There are other 
possibilities though. The dye pattern has a considerable degree of self-similarity, and 
folds present in early periods remain throughout the experiment as details are added 
on a finer and finer scale (Muzzio, Swanson & Ottino 1991). An accurate picture of the 
structure of the folds after N periods can be achieved by plotting all of the positions 
corresponding to the previous periods. This type of simulation provides a much more 
efficient use of CPU time and a faithful representation of the experimentally observed 
dye structure. The initial shape of the tracer is represented as a 'square' in the bipolar 
frame and consists of 10201 points. The initial location and size are similar to those in 
the experiments. A second-order Runge-Kutta (midpoint) method is used to integrate 
the particle trajectories, and a bilinear interpolation is used to calculate the velocity 
between the nodal points. 

Chaotic flow provides a stringent test of numerically computed velocity fields : small 
errors in the velocity field are magnified by the chaotic dynamics. The numerical code 
is validated in two steps for a chaotic flow. The experimental photograph in figure 8 (a)  
is used for comparison with the computed solutions. First, a simulation is done using 
the discretized analytical Stokes solution on the 49x96 grid with the midpoint 
integration method and bilinear interpolation, and the result is presented in figure 8(b). 
This comparison indicates that the integration, interpolation, and grid are of sufficient 
accuracy. Second, a computation is done using the viscoelastic algorithm in the Stokes 
limit, W e  and Re + 0. The algorithm contains singularities at either W e  = 0 or Re = 0 
since the reciprocal of these numbers appears on the right-hand side when (1 3)-( 15) are 
integrated. Numerically, the Stokes limit is reasonably approximated by 
Re = W e  = and the result in figure 5 demonstrates sufficient agreement with the 
analytical solution and the experimental photograph to validate the viscoelastic 
algorithm. 

The simulated tracer advection computation produces the same qualitative result as 
the experiment. The effects of elasticity can be quantified by computing the amount of 
stretching for various degrees of elasticity. In order to calculate the lineal stretching 
rate, the deformation tensor F must be computed for all material points in the flow. This 
requires solving the evolution equation for F, 

d F  
d t  - = (VU)'. F ;  F,=, = I, 
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FIGURE 5. Viscoelastic simulation in the Stokes limit for 0 = in and B < 0 ;  
We = and Re = 

as well as the evolution equation for the spatial coordinate of the material point, 

dx - _  - u ;  
dt XtS0 = x. 

The stretching rate h is defined as 

ldxl h = lim - 
dX+O ldA 

and dx = F-dX, (26) 
where dX is an infinitesimally small fluid line at t = 0 and dx is the fluid line at some 
later time t .  Since the stretching rate is exponential, the timescale T, is defined as 

X = exp(t/T,), (27) 
and h is the geometric mean of the spatially distributed values of A. 

This method is time consuming but accurate for an analytical velocity field and such 
an approach was used by Swanson & Ottino (1990). However, to compute h for a 
discretized velocity field, the method is not as accurate since the velocity gradients in 
(23) are computed numerically from the nodal values of the velocity. A simpler and still 
reasonably accurate calculation can be done by measuring the distance, d, between two 
‘adjacent’ material points as they are separated by the flow. As with the stretching rate, 
we would expect the rate of separation to occur exponentially in time in the chaotic 
flow. We should note that, although d is comparable with the lineal stretching during 
the initial part of the computation, the correspondence is diminished once a tracer of 
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similar dimension to the initial separation distance begins to fold. An analogous time 
constant T,  can be extracted from this calculation: 

d = exp ( t / q ) ,  (28) 
which d is the geometric mean of the spatially distributed values of d. 

To perform the calculation, two points are placed near the centre of a nodal box 
along a constant value of qi and separated in the (-direction by an initial separation 
distance do. The two points in each nodal box are advected by the flow and the distance 
between them is tracked. This procedure is repeated for all of the nodal boxes resulting 
in a spatial distribution of d. It is observed in the periodic-flow calculations that, after 
about 10 radians of rotation of the outer cylinder and for do = 2 x lop6, the connection 
between d and h is lost. This corresponds to about 6 periods for 6 = ix and 5 periods 
for 6 = 2x. 

4. Advection of elastic fluids: comparison of experiments and 
computations 

4.1. Steady and transient velocity fields 
The experimental window of Weissenberg numbers is defined by the Newtonian limit 
on the low end and the transition to three-dimensional flow on the high end; this 
window is surprisingly small, from 0.02 to 0.1. The streamlines for Stokes flow with the 
inner and outer cylinders rotating are presented in figure 6 .  For the geometry and range 
of W e  considered in this study, the streamline pattern does not change significantly 
although the separation bubble shrinks slightly in both cases as W e  increases. It should 
be mentioned that for the inner cylinder rotating, a reduction of the region of separated 
flow has also been observed experimentally with laser Doppler velocimetry by Lawler 
et al. (1986) and computationally by Beris, Armstrong & Brown (1987) for eccentric 
cylinders with small ,u (O(O.1)). 

The effect of elasticity on the steady velocity fields can be quantified in terms of the 
root-mean-square deviation of the nodal values of the elastic flow compared to the 
(analytical) Newtonian flow, 

where n is the number of nodes in the interior of the flow, and the velocities are 
normalized with respect to rin Qin. Average r.m.s. values corresponding to either 
the inner or outer cylinder rotating range from 2.1 x for W e  = 0.01 to 4.2 x lop2 
for W e  = 0.1. Some of the difference can be attributed to discretization error; for 
example, the r.m.s. value for the Newtonian limit ( W e  = velocity field used to 
calculate figure 5 is 1.7 x low3. 

Because the fluid has memory, or equivalently, because of the presence of the 
convected derivatives in the Maxwell constitutive equation, the velocity fields are 
asymmetric. However, the degree of asymmetry is proportional to We, and 
asymmetric effects on the streamlines are not noticeable until W e  2 1 (Beris, Armstrong 
& Brown 1983). Since W e  < 0.1, the degree of asymmetry is small, 0(10-4- in 
the range of W e  examined in this study. 

Time-periodic flow is generated by rotating either the inner or outer cylinder as 
described in $2. The experimental range of parameters is as follows. The values of 8 
considered are gx, 2x, and 4x with corresponding values of the Sr equal to 0.14, 0.1 1, 
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FIGURE 6. Analytical solution for Stokes flow: (a) inner cylinder rotating; 
(b) outer cylinder rotating. 

0.05, respectively. The Re ranges from 0.002 to 0.005, and Re is set at 0.002 for the 
numerical computations. The value of El is between 10 to 20, indicating that the effects 
from elasticity are at least an order of magnitude higher than the effects of inertia. 

Since the flow is considered piecewise steady in the computations, the importance of 
the transient velocity field in the experiment should be addressed. Two tests are 
performed for the 0 = $n counter-rotating flow (this flow has a characteristic 
bifurcation signature which is very sensitive to small perturbations) in order to 
determine if the transient is significant. The first test is done with an elastic fluid with 
either a zero time lag between cylinder change-over or a 5 s time lag between cylinder 
change-over. The second test is an experiment for a Newtonian fluid with an imposed 
transient. An artificial transient is created by ramping the cylinder rotation speed from 
rest to the final set point over an interval of time equal to one-tenth of the period 
length. This choice is made since the maximum ratio of the dynamic relaxation time of 
the elastic fluid to the period length in this study is about 7 % .  Both of these tests 
indicate that the transient is insignificant as no noticeable effects on the dye pattern are 
observed. We conclude that the bifurcations observed in the chaotically advected dye 
patterns in the time-periodic flows are the result of minor changes in the steady-state 
velocity fields. This result is very much in line with other simulations that we have 
conducted involving small variations in the velocity field due to the presence of a shear- 
thinning viscosity. 

Experiments are conducted for We between 0.05 and 0.11, and a series of 
computations is conducted independently for We between 0.01 and 0.1. Our intention 
is not necessarily to model the experimental fluid with a Maxwell constitutive equation, 
but rather to conduct experiments with a simple fluid and computations with a simple 
constitutive equation and compare the results on the impact of elasticity on chaotic 
advection. However, in some cases, a nearly perfect match between experimental and 
computed structures is possible. In making these types of comparisons, a few 
observations are in order. Because of the qualitative nature of the results, some flow 
conditions produce elaborate features which make matching the experiments and 
computations easy. For example, experiments with 0 = f n  and 52 < 0 lead to 
characteristic bifurcation signatures allowing unmistakably clear matches (see figure 
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FIGURE 8. Experiments and computations on the advection of a dye blob for L? < 0 and 8 = %. (a. b) 
Newtonian; (c) We = 0.06 0.03; v) We = 0.10; (a-J) N = 16 periods. 0.02; (d) We = 0.04; (e) We = 0.10 

FIGURE 10. Experiments and computations on the advection of a dye blob for s2 < 0 and 0 = 2n. 
(a, 6) Newtonian; (c) We = 0.06 k 0.02; (d) We = 0.04; (a-d) N = 12 periods, 

NIEDERKORN & OTTINO (Facing p.  256) 
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FIGURE 11. Experiments and computations on the advection of a dye blob for 52 < 0 and 6 = 2n. 
(a, b) Newtonian; (c) We = 0.07 +_ 0.02; (d) We = 0.04; (a-d) N = 6 periods. 

FIGURE 15. Experiments on the advection of a dye blob for 52 > 0 and 0 = $ .  (a, b) Newtonian; 
(c, d) We = 0.05 f 0.02; (e, J) We = 0.11 +_ 0.03; (a, c, e) N = 3 periods; (b, d,  fl N = 5 periods. 

NIEDERKORN & O ~ N O  
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FIGURE I .  Analytical solution for Stokes flow with counter-rotating cylinders. 

8). However, other flow conditions, particularly far away from island bifurcations (for 
example 0 = 4n), are relatively featureless and matches over a wider range in 
We (0.02-0.1) are possible. Even though the agreement between the experimental and 
computed We is not perfect, the numbers are comparable within experimental error, 
and the agreement is more than what can reasonably be expected from such a simple 
constitutive model. In 54.4, we speculate on why the Maxwell model appears to 
sufficiently reproduce the qualitative results of the experimental fluid. 

4.2. Counter-rotating cylinders (a < 0) 
The unperturbed, counter-rotating Stokes flow is characterized by an elliptic fixed 
point and a saddle point, both located on the axis of symmetry. The streamlines are 
shown in figure 7. Under time-periodic operation, the elliptic fixed point is replaced by 
an elliptic period-1 point whereas the saddle point becomes a hyperbolic periodic point. 
For a Newtonian fluid, this elliptic periodic point is present for all 0 c in (Swanson & 
Ottino 1990), although the region of circulation in the neighbourhood of this point 
progressively shrinks. At 19 = in, the elliptic point bifurcates into a hyperbolic point 
and two elliptic points, as illustrated by the experimental photograph and computation 
in figure 8(a, b) (plate 1). This flow provides a useful reference case: the bifurcation 
signature presents a taxing experimental example for computational matches. What 
happens to this bifurcation for an elastic fluid? Figure 8(c) is a photograph of fluid 
PAA-3 and We = 0.06 f 0.02; there is a large island which does not communicate with 
the rest of the spatial domain. The bright tail in the photograph results from a part of 
the tracer which was initially placed in the regular region and illustrates the rather 
substantial difference in the amount of stretching between the chaotic and regular 
regions. A computation for We = 0.04 is shown in figure 8 (d)  illustrating remarkable 
agreement with the experiment. The structure of the folds on both sides of the island 
demonstrate a one-to-one correspondence between the computation and experiment. 
The structure of the folds in other regions of the flow are also similar, if not identical. 
The large tail in the island is not present in the computation because of a slight 
difference in the initial condition. If We is increased to 0.10, the island becomes larger, 
as seen in both the experiment (fluid PAA-1, We = 0.1010.03) and computation, 
figure 8 (en. One might conjecture that the elasticity somehow inhibits the bifurcation 
of the elliptic point resulting in the large island and poorer mixing. However, 

11 FLM 256 
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FIGURE 9. Computations of the advection of a line of points placed at the line of symmetry in the large 
gap for 52 < 0 and 0 = in. (a) Newtonian; (b) We = 0.02; (c) We = 0.04; ( d )  We = 0.10; (a) N = 10 
periods; (b-d) N = 20 periods. 

computations for We = 0.02, 0.04, and 0.1 in figure 9 reveal that the hyperbolic point 
and the pair of elliptic points are present in all of the flows. However, the region 
surrounding these points for We > 0 does not communicate with the rest of the flow 
because of a bounding KAM surface (Ottino 1989). Also, as the elasticity increases, the 
elliptic points move closer to the hyperbolic point, and it is likely that the bifurcation 
is inhibited at some higher We. However, verifying this conjecture would entail a 
considerable investment in computational resources. 

Does elasticity always inhibit mixing? Figure 10 (plate 1) compares the Newtonian 
flow and elastic flow (fluid PAA-3, We = 0.06 f 0.02) for 0 = 2.n and illustrates that the 
answer is not a simple ‘yes’. The crescent-shape island present in the Newtonian case 
has all but disappeared in the viscoelastic case. The computation likewise shows the 
disappearance of this island. The presence of this island is extremely sensitive to We 
and essentially disappears even for We = 0.01. The large regular region next to the 
outer cylinder is about the same size in both cases. For 0 = 47c, there is no difference 
in the asymptotic coverage of the dye between the Newtonian and elastic fluid (PAA- 
1, We = 0.07f0.02) experiments as shown in figure 11 (a, c) (plate 2). However, close 
examination of the photographs reveals that the average striation thickness for the 
Newtonian flow is much less than that of the elastic flow. This difference can be seen 
in the computations in figure l l(b,  d )  by the degree of scattering of the points 
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Revolutions of outer cylinder 

FIGURE 12. Plot of the logarithm of the geometrical mean of the distribution of the separation 
distances versus number of periods for 52 < 0 and 0 = in (left axis) and 0 = 2n (right axis): 0, 
Newtonian; 0, We = 0.01; 0, We = 0.02; x ,  We = 0.04; +, We = 0.10. 

FIGURE 13. Analytical solution for Stokes flow with corotating cylinders. 

Time constant, T 
Q < O  

We 0 = $ 1  0 = 2 n  
0 1.23 1.21 
0.01 1.24 1.19 
0.02 1.26 1.23 
0.04 1.34 1.31 
0.10 1.55 1.57 

9 > 0  

0=;n 0=27c 
0.96 0.95 
1.18 1.26 
1.27 1.36 
1.44 1.55 
1.81 1.91 

TABLE 2. Time constants for the exponential growth of the geometric mean 
of the separation distances 

11-2 
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FIGURE 14. Computations of the deformation of a dye blob for SZ > 0 and 6' = tn. (a) Newtonian, 
N = 16 periods; (b) We = 0.04, N = 48 periods. 
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FIGURE 16. Computations of the advection of a dye blob for 52 > 0 and 0 = i7c. (a) Newtonian; 
(6) We = 0.02; (c) We = 0.04; ( d )  We = 0.10; (a-d) N = 5 periods. 

representing the tracer and whether the points form a coherent structure. However, the 
effect on the rate of reduction of the average striation thickness is better demonstrated 
by the timescale of the mean of the separation distance. 

The separation distance between adjacent points in the flow provides a quantitative 
measure of the effect of elasticity on the stretching of fluid elements. In order to compare 
computations for different &values, the number of periods is presented as the 
cumulative rotation of the outer cylinder. The correlation between the separation 
distance and the lineal stretching decreases significantly after 4-5 revolutions of the 
outer cylinder as is expected due to the folding of the tracer. The logarithm of the 
geometric mean of the distribution of separation distances is plotted against the 
number of periods for counter-rotating cylinders in figure 12. The relationship remains 
exponential with an increasing time constant as We increases. The time constant, T,, 
defined in (28) is listed in table 2 for We = 0, 0.01, 0.01, 0.04, and 1.0. The values of 
the time constant are similar for both &values in the counter-rotating flow. Curiously, 
the time constant for 6 = 2.n and We = 0.01 is slightly less than the Newtonian case; 
this decrease may be attributed to the contribution of the population of points in the 
crescent-shaped island present in the Newtonian flow. 
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FIGURE 17. Plot of the logarithm of the geometrical mean of the distribution of the separation 
distance versus number of periods for SZ > 0 and 0 = $t (left axis) and 0 = 2~ (right axis): 0, 
Newtonian; 0, We = 0.01; 0, We = 0.02; x ,  We = 0.04; +, We = 0.10. 

4.3. Corotating cylinders (52 > 0)  
The unperturbed, corotating Stokes flow does not possess either hyperbolic or elliptic 
fixed points as illustrated by the streamlines in figure 13. Consequently, there is no 
period-1 elliptic point and its associated period-1 island in the perturbed Newtonian 
flow. Figure 14 illustrates the simulation of the advection of a tracer for 0 = in for a 
Newtonian and elastic fluid (We = 0.04). The Newtonian fluid contains no large low- 
period islands. The spatial extent of the chaotic region for the elastic fluid is 
comparable to the Newtonian fluid except for the presence of two sets of period-3 
islands. The elasticity does have a large effect on the rate at which the tracer is mixed; 
48 periods are required to develop the structure in figure 14(b) versus 16 periods for 
the Newtonian fluid in figure 14(a). This effect on rate can be seen in the experiments. 
Figure 15 (plate 2) compares the Newtonian, PAA-3 (We = 0.05 & 0.02), and PAA-1 
(We = 0.1 1 f 0.03) fluids after 3 and 5 periods and illustrates the decrease in the amount 
of stretching as We increases. Figure 16 shows a similar trend in the computations for 
We = 0.02, 0.04, and 0.1 after 5 periods. 

The most interesting contrast to the counter-rotating case is the large difference 
produced by relatively small values of We. The plots in figure 17 of the mean of the 
separation distances and the tabulated values of the time constant in table 2 indicate, 
for both &values, that there is a significant difference for We = 0.01. The large impact 
on the rate of stretching in the corotating flows is observed in the experiments in figure 
15. Also, in contrast to the counter-rotating case, 8 = ;.n appears to be more efficient 
at stretching fluid elements than 0 = 2.n: the time constant for 0 = in is about 0.1 less 
than 8 = 2.n for all We. Note that there is essentially no difference in the time constant 
between the two 0-values for the Newtonian fluid. 

The dependence of a normalized time constant (TR = T,/T, ,Newtonian) on We is 
shown in figure 18. For 52 < 0, TR scales with We1.6, and for 52 > 0, TR scales with 

, with a large difference even for small We. The plot also shows the sensitivity 
of TR to 0 for 52 > 0. The rate of stretching in corotating flows is more sensitive to small 
changes in the kinematics; this sensitivity to 52 is intriguing in the light of the fact that 
the cylinders are operated in a discontinuous manner. 

~ ~ 0 . 5 5  
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FIGURE 18. Dependence of the normalized time constant on We: 0, 0, 0 = tn; 0, ., 0 = 2n; 
open symbols, SZ < 0; filled symbols, SZ > 0. T, = TJ(q, 

4.4. Agreement between the Maxwell model and the experimental results 
for a Boger fluid 

The upper-convected Maxwell model is the simplest model capable of describing a fluid 
with memory. It has some drawbacks however. For example, it is well known that the 
Maxwell equation does not include the contribution to the stress from the solvent, and 
rheological flows of dilute polymer solutions of constant viscosity are better described 
by the Oldroyd-B rheological model (Binnington & Boger 1985). Because the solvent 
contribution to the stress satisfies the Newtonian constitutive equation, the Oldroyd- 
B model is not purely hyperbolic, and more computational resources and specialized 
algorithms are necessary to simulate the flow. However, a brief analysis of the limiting 
behaviour of each equation in slow flows suggests that the simpler Maxwell model is 
sufficient to produce the qualitative results presented in this paper. 

In the limit of De M 0 and W e  > 1, all constitutive equations asymptotically 
approach the retarded motion expansion of the extra-stress tensor (Bird et al. 1987): 

+ b3 G(3) + bldG(1) * G(Z) + G(2) * G(,J + b1: Il(G(1) : G , J  G(l), (30) 
where only the terms up to third order have been included. Since creeping flow of a 
second-order fluid in a plane also satisfies the biharmonic equation for the stream 
function (only the value of the extra-stress is affected, see Tanner 1966), it is necessary 
to include third-order terms to be able to describe any kinematical differences from the 
Newtonian case. The G(i) are defined as 

s = b, G(1) +b, G(2) + bll(G(1) * G(1J 

G(l) = V U + ( V U ) ~  (3 1) 

and 

The coefficients b,, b,, bll, etc. are material constants and can be expressed as a function 
of the material parameters in either constitutive equation. The constants for both the 
Maxwell and Oldroyd-B models as a function of the material functions !PI, and 7 are 
summarized in table 3. The retardation time A, is 

1, 
A T 

9 
2 (33) 
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Maxwell Oldroyd-B 

4 2  0 0 
4:,1 0 0 

TABLE 3. Representations of the Maxwell and Oldroyd-B constitutive equations 
in the retarded motion expansion 

where vs  is the solvent contribution to the total viscosity. The Maxwell model has a 
zero retardation time since it does not account for the solvent contribution to the stress. 
However, by comparing the constants in table 3, the qualitative behaviour of both 
models in the slow flow limit is identical. The only difference between the two models 
is the magnitude of the b, constant. It is our opinion, that when the kinematics in a two- 
dimensional flow field first begin to deviate from the Newtonian flow, the deviation is 
qualitatively similar for both of these constitutive models. This similar behaviour in 
slow flows is the reason why the Maxwell model can produce the same qualitative 
behaviour seen in the experiments. 

5. Conclusions 
Small variations in the velocity field associated with mild elasticity (We < 0.1) 

produce large effects in the advection of a passive tracer. In fact, one of the most 
remarkable characteristics of chaotic systems is that a slight change in the kinematics 
can significantly alter the character of the periodic points and produce and/or inhibit 
bifurcations. This seems to be the case in this study. Both the asymptotic coverage of 
the dye tracer and the rate of stretching of fluid elements in the flow are affected; 
counter-rotating and corotating flows produce substantially different responses. The 
effect on the asymptotic coverage is greater for the counter-rotating case; the coverage 
is seen to decrease in some cases and, somewhat unexpectedly, increases in others (for 
example, 6'= 27~). The rate of stretching of fluid elements, as quantified by the 
geometrical mean of the separation distances, remains exponential for all We, with an 
increasing time constant as We increases for both cases of relative cylinder rotation. 
For corotating cylinders, the relative impact on the asymptotic coverage and rate of 
stretching is reversed. The asymptotic coverage is largely unaffected by We > 0; 
however, the time constant for the exponential stretching is noticeably affected even for 
We as small as 0.01. In all cases studied, the placement of regular regions (islands) 
remains symmetric since the steady-state velocity fields remain symmetric. 

The difference in the results between counter-rotating and corotating cylinders is 
interesting since the time-periodic flow is operated in a discontinuous fashion. Since 
only one cylinder is rotating at any given time and both inertial and transient effects 
are demonstrably small, the deformation history of the fluid within a period is identical 
for either counter-rotating or corotating cylinders. Consequently, the differences 
observed between these two modes of operation must be attributed to the way the two 
different mappings are composed to produce the time-periodic flow. 

Within a given mode of operation, the effect of elasticity on the streamline portraits 
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translates, in a magnified way, in different unstable manifold structures which in turn 
provide the template for the dye-structure pattern formed by the advection of a tracer. 
A physical understanding of the processes described here necessitates the development 
of a model describing how the presence of a polymer affects the manifold structure 
associated with hyperbolic points. We are aware of only one study along these lines 
(Berry & MacKley 1977) and more work seems possible in this regard. 

The computational study indicates that the investigation of chaotic advection of 
viscoelastic fluids using a solution based on a discretized field is possible with an 
acceptable amount of error; however, techniques based on a low number of periods are 
better suited than those requiring asymptotic analysis (e.g. Poincart sections). It is 
noteworthy that small We leads to such noticeable effects; it is also reassuring, 
however, that such effects can be faithfully captured with a simple constitutive 
equation. A few key assumptions are required to make the problem tractable. For 
conserving CPU time, the piecewise-steady approximation is most important. The 
majority of computer resources are used for the computation of the velocity field, and 
typical CPU times range from 3-14 days on a Digital DECstation 5000 workstation to 
1-5 days on an IBM RS/6000 workstation. Because the time integration is explicit, the 
code can be easily adapted for parallel processors, and CPU times on a massively 
parallel machine could be reduced by a factor equal to the number of nodes times the 
number of unknowns (30000). Although the SCM-star algorithm is only appropriate 
for a constitutive equation with zero retardation time, other algorithms based on the 
Oldroyd-B equation have been developed (Keunings 1989) for steady flows and will be 
needed to expand the study of these fluids to cases where We > 0.1 within the 
piecewise-steady approximation. The SCM-star and other algorithms can easily 
incorporate nonlinear terms in the stress such as those in the Giesekus (1982) and 
Phan-Thien-Tanner (1977) equations, and these extensions are not difficult to 
implement. The main stumbling block in expanding these studies is the CPU time 
needed to perform a full unsteady simulation taking into account the effect of the 
transient fields. Because of the timescales present in the processing of polymers, the 
transient behaviour of these fluids might be an important consideration. Given the 
increase in efficiency in both algorithm development and computer architecture, the 
ability to assess these types of problems seems to be on the horizon. Additionally 
experimental studies such as the one presented in this paper coupled with analysis 
based on concepts from chaos and mixing theory will be needed to model the 
complicated behaviour in these systems. With the development and application of 
dynamical systems tools, more insight can be gained into the effects of elasticity, which 
will lead to the development of design and operating heuristics for the mixing processes 
of complex fluids. 
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Appendix 
The split-coefficient matrix (SCM) method utilizes information propagation along 

characteristics while allowing one to carry out the simulation on a predetermined finite- 
difference grid. The following analysis is presented for a one-dimensional spatial 
system without loss of generality to systems with more dimensions. For a more 
complete discussion, the reader is referred to Anderson et al. (1984). 

Consider an unsteady, quasi-linear partial differential system of equations : 

w , + A * w ,  =f, (A 1) 
where w is a vector of unknowns of length m, A is a m x m coefficient matrix whose 
elements can contain elements of w but not their derivatives, andfis a vector of length 
m of lower-order terms. The subscripts denote partial differentiation. If the system is 
hyperbolic, all of the eigenvalues of A are real, and there are m linearly independent 
eigenvectors of A. A diagonal matrix L whose entries are the eigenvalues of A is similar 
to the matrix A ;  that is 

where the rows of X-l are the eigenvectors of A. In the SCM method, the coefficient 
matrix A is split into positive and negative parts depending on the sign of the 
eigenvalues of A.  This splitting is achieved by performing a similarity transformation 
as in (A2) but with only the positive or negative eigenvalues in L. Thus, the split 
matrices A+ and A- are defined as 

A+ = X.L+.X-l 

A = X.L.X-l (A 2) 

(A 3) 

and A- = X.L-.X-', (A 4) 
where the diagonals of L+ and L- contain only the positive or negative eigenvalues of 
A, and the rest of the entries are zero. The following identity holds: 

A = A++A-. (A 5 )  
Since A+ contains the information from the positive running characteristics, and 
likewise for A- and the negative running characteristics, the following finite-difference 
approximation of (A 1) is obtained upon substitution of (A 5 ) :  

W, +A+- W: +A- - W! =J: (A 6) 
where the V superscript denotes backward finite differences the the A superscript 
denotes forward finite differences. The equation can now be integrated using a suitable 
method such as Euler, Runge-Kutta, or Gear. 

The major drawback to this method is that the coefficient matrix must be split at 
every node during each step in the integration. However, we were able to improve the 
speed of the algorithm by defining a new coefficient matrix: 

A* = X.L*.X-1 

where L* is a diagonal matrix containing the absolute values of the eigenvalues of A. 
It follows that 

(A 7) 

A' = i(A+A*). (A 8) 
If the split matrices in (A 6) are replaced with the expressions in (A 8), the 
approximating system of equations is 

W, ++{A- (w: + w;) +A* - (wZ- w!)) =J: (A 9) 
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In this new version, SCM-star, there are analytical expressions for both coefficient 
matrices A and A*, and the characteristics are properly treated without performing the 
logical conditional tests that would be necessary to split the matrix A. Since the 
algorithm improvement exchanges logical conditional tests for floating point 
operations, the relative improvement is dependent on the processor architecture. For 
computations on a Digital VAX 11/780 the decrease in CPU time is about 50 %. For 
computations on Unix workstations with a RISC processor, the decrease in CPU time 
is about 10%. 
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